전체기사 최신뉴스 GAM
KYD 디데이
산업 생활경제

속보

더보기

[김정호의 4차혁명 오딧세이] 인공지능의 소통 방법

기사입력 : 2019년07월22일 08:00

최종수정 : 2019년08월06일 19:35

※ 본문 글자 크기 조정

  • 더 작게
  • 작게
  • 보통
  • 크게
  • 더 크게

※ 번역할 언어 선택

김정호 교수.

펀치 카드의 추억

필자가 대학 1학년때 배운 컴퓨터 언어가 ‘포트란’이라는 과학기술용 컴퓨터 언어였다. 이러한 컴퓨터 언어란 인간과 컴퓨터의 소통을 가능하게 해주는 도구이다. 그 포트란은 주로 수학과 과학기술 계산에 편리한 컴퓨터 언어였다. 1980년대인 그때 학교에서 포트란 언어를 읽고 실행하는 컴퓨터가 IBM360/380 시리즈로 기억 한다. 그런데 프로그램을 직접 짜면 ‘펀치카드’라는 두꺼운 종이에 구멍이 뚫리는 방식으로 프로그램이 기록이 된다.

지금 생각해 보면 아주 원시적인 기록이며 컴퓨터 입력 방식이다. 타이프 치듯이 프로그램을 입력하면 이 펀치카드 종이에 구멍이 뚫린다. 이렇게 완성된 이 수 십장, 또는 수 백장의 펀치카드 뭉치를 학교 전산실에 제출하고 그 이후 1-2일 후에 계산 결과를 얻는다. 그때 계산 결과는 종이에 숫자 형식의 데이터로 프린트 되어 나온다. 그러니 1980년대초 컴퓨터의 입력은 종이에 구멍이 뚫린 펀치카드였고, 출력은 프린트 용지였다. 종이가 많이 필요했다. 이때 프린트 용지 맨 바깥쪽에는 프린트 기기에 쉽게 연결이 되게 작은 구멍이 아래 위로 쭉 뚫려 있었다. 이 수 백장의 프린트 용지는 추후 전공 관련 수학 수식을 풀때 요긴하게 쓰인 ‘이면지’였다. 종이가 이면지이자 컴퓨터와의 소통 방식이었다.

그런데 한번 포트란 프로그램에서 실수를 하면 몇 일이 지난 후에야 그 결과를 보고, 다시 고치고 입력해야 한다. 디버깅에 시간이 엄청 많이 걸린다. 그래서 프로그램을 짤 때 실수를 최소화해야 한다. 그때 필자는 학교를 전철을 타고 다녔는데, 전철에 앉아 펀치카드에 입력된 프로그램의 오류를 찾기 위해 몇 번이고 다시 검토하고 읽어 보기도 한 기억이 난다. 이처럼 이러한 초기 컴퓨터의 입출력 방식은 수시로 고치고 편집하거나 다시 실행하기 어려웠다. 그리고 종이의 낭비가 심했다고 볼 수 있다. 요즘 말로 ‘copy’, ‘paste’ 가 불가능하다. USB 에 작게 담거나 인터넷으로 파일을 보낼 수도 없다. 그때는 펀치카드 한 개의 박스로 담아 이동했다. 시간과 비용이 많이 드는 소통방식이다.

그 이후 몇 년이 지나 애플 8비트 컴퓨터가 학과에 한 대가 도입이 되었다. 이제는 펀치카드나 프린트 종이 필요 없이 화면을 보고, 프로그램을 편집하고, 입력하고, 그 계산 결과도 바로 화면으로 보았다. 컴퓨터와의 소통에 종이가 사라지기 시작했다. 편집이나 수정은 한 줄, 한 줄 했다. 요즘처럼 화면 전체를 왔다 갔다 하면서 고친 것이 아니라, 한 줄, 한 줄 고쳤다. 그야말로 줄 편집(line editing)이었다. 이 때 사용한 프로그램으로 ‘베이직’이 기억한다. 이후 IBM XT/AT 개인용 컴퓨터가 등장하면서 컴퓨터가 더욱 대중화 되었다. 워드 프로세서도 등장했다. 이제 펀치카드는 사라졌다. 이처럼 컴퓨터가 발전하면서 입력, 출력 장치도, 다르게 말하면 소통 방식도 인간에게 더 편리하게 발전해 왔다. 따라서 인공지능 컴퓨터의 입출력 형태와 소통 방식도, 또 다시 진화할 것으로 기대한다.

인공지능의 입력과 출력

현재 가장 많이 사용되고 있는 대표적인 인공지능 알고리즘이 CNN(Convolution Neural Network)이다. 주로 사진 이미지나 동영상을 판독하고, 이해하는데 사용하는 알고리즘이다. 특히 인터넷과 유튜브에 널린 수많은 사진과 영상 자료가 CNN 학습 데이터가 된다. 이때 컴퓨터가 자동적으로 인터넷에서 읽어서 긁어 모은다. 펀치카드도 필요가 없고 자판기도 필요가 없다. CNN은 이들 사진들을 입력하고, 출력으로는 예를 들어 그 사진 속의 물체를 인식(Classification)하거나 사진(Image) 속의 장면으로 글(Caption)로 쓰거나, 이야기(Text)를 만들 수도 있다. 또는 사진 속의 인물이 다음에 할 행동을 예측(Prediction)하거나 추후 일어날 사건을 예측한다. 또는 화면 속의 상황을 이해(Explain)할 수 있다. 이렇게 CNN의 출력은 ‘Tag(이름), ‘설명문(Caption)’, ‘문학 작품(Text)’이 되기도 한다. 때로는 음성 단어나 스토리로 만들어 출력할 수도 있다. 그리고 더 나아가 그 내용에 맞게 영상도 제작 가능하고, 음악도 창작 가능하고, 그림도 창작 가능하다. 출력으로 창작물을 만들 때 GAN(Generative Adversary Network) 알고리즘이 CNN과 같이 결합될 수 있다. 이 경우 출력은 창작 그림, 시, 문학작품, 음악, 영화도 된다.

입력 ‘사진’을 보고, ‘새’라고 확률(출력)을 제시(Classification)해 주는 CNN의 내부 구조. [출처=KAIST]

인공지능에서 CNN 다음으로 많이 사용하는 알고리즘이 RNN(Recurrent Neural Network)이다. 주로 시간 차이를 두고 순차적으로 입력되는 데이터의 해석과 이를 기초한 미래 예측에 사용된다. 대표적으로 사용하는 말을 알아듣는 인공지능 알고리즘이다. 말은 문법에 따라 순서대로 들어 온다. 그래서 입력의 순서에 따라 의미와 해석이 달라진다. 이 때문에 인공지능이 컴퓨터 내부에서 순차적으로 데이터를 받아 들이고, 순차적으로 학습하고 판단하도록 설계되어 있다. 다른 말로 시간과 순서 개념이 있는 인공지능이다. 그래서 RNN의 입력은 문장 혹은 사람의 말이 된다. 또는 영화의 장면과 장면의 연속이 입력이 될 수 있다.

책 한 권 전체가 RNN의 입력이 될 수도 있다. 그 속에 단어가 순서대로 나열되어 있게 때문이다. 더 나아가 인류가 유사이래 만든 모든 문서, 모든 책이 RNN 의 입력이 될 수 있다. 여기에 전세계 수 백 개 언어의 책과 문서, 녹음 파일 전체가 입력 데이터가 되는 엄청난 분량이 된다. 인공지능 컴퓨터가 책을 모두 쉽고 빠르게 읽는 입력 장치만 개발되면 된다.

전화 상담하면 녹음이 되고, 디지털화되면 그 파일이 바로 RNN의 입력이 된다. 지하철 속에서 주고 받는 대화 모두가 누군가 기록한다면 RNN 입력이 된다. 스마트폰으로 주고 받는 문자와 통화내용도 입력이 된다. 집에 설치된 아마존 인공지능 스피커도 ‘알렉사’도 RNN 입력이 된다. 그래서 CNN의 영상 이미지 이상으로 많은 RNN 입력 데이터가 지구상에 존재한다.

이러한 RNN의 출력은 ‘정답’, ‘독후감’, 설명문’ 또는 ‘다음 문장’이 된다. 입력 데이터를 읽고 이해하고, 그 전체를 요약하거나 문맥을 설명하는 것이 출력도 된다. 또는 그에 해당하는 사진이나 영상을 출력할 수도 있다. 또는 입력 문장에 맞게 음악, 그림, 소설, 영화 등을 창작할 수 있다. 이때는 RNN 과 GAN이 결합해야 한다. 이처럼 RNN의 입력은 문자이나, 녹음, 영상, 책이 되고 출력은 단어, 해설, 또는 창작물이 된다. 이것이 RNN의 소통방식이다.

순서대로 들어오는 입력 문장을 통해 출력으로 해석하거나 단어로 표현하는 RNN 구조. [출처=KAIST]

궁극적인 인공지능의 입출력

결국 인공지능이 사람같이 생각하고, 행동하고 교류하려면 입출력 방식이 인간을 닮은 모습이 아닌가 한다. 결국 인공지능 소통 방식이 인간과 같아야 한다. 그렇게 되면, 인공지능의 입력은 사람처럼 말을 알아 듣고, 눈으로 볼 수 있어야 한다. 그리고 인공지능의 출력은 말을 하거나 글을 쓰거나, 단어로 표현하거나 한 단계 더 나아가, 문장, 소설, 시, 그림, 음악, 영화와 같은 창작물이 될 수 있다. 더 똑똑한 인공지능은 말을 하지 않아도, 문맥이나 표정만 보고 알아서 판단하고 행동을 하면 더 좋다. 궁극적으로 말 끼를 알아듣고, 눈치가 빠른 인공지능이 되어야 한다. 그 때 인공지능은 IQ 뿐만 아니라 EQ 도 좋아 사회성과 도덕성을 가지면 더욱 바람직하다.

미래 자율주행자동차에서는 이런 인공지능의 입출력 방법이 인간과 인공지능 컴퓨터와의 소통과 대화의 방식이 된다. 자율주행자동차의 기능에서 인공지능 자체의 기능도 중요하지만, 인간과의 소통을 위한 입출력 기능도 그에 못지 않게 같이 중요하다. 그래야 완전한 자율주행자동차 시대가 된다. 결국 인공지능이 발전하면서 인공지능의 소통 기술도 함께 발전되어야 한다. 궁극적으로는 소통의 방식은 ‘인간의 모습’을 닮아 간다. 언제인가 인공지능의 소통 방식으로 ‘텔리파시’까지 사용될 수도 있다.

 

[김정호 카이스트 전기 및 전자공학과 교수] joungho@kaist.ac.kr

[뉴스핌 베스트 기사]

사진
노벨문학상 크러스너호르커이는 누구? [서울=뉴스핌] 오광수 문화전문기자 = 올해 노벨문학상은 헝가리의 소설가이자 각본가인 라슬로 크러스너호르커이에게 돌아갔다. 스웨덴 한림원은 9일 오후 8시(한국 시간) 라슬로 크러스너호르커이(71)를 올해의 수상자로 호명했다. 한림원은 라슬로 크러스너호르커이가 "종말적 공포의 한가운데서도 예술의 힘을 재확인시키는 강렬하고 예지적인 작품 세계"를 인정받아 이 상을 수상하게 됐다고 밝혔다. [서울=뉴스핌] 오광수 문화전문기자 = 헝가리 작가 라슬로 크러스너호르커이. [사진 = 노벨상위원회] 2025.10.09 oks34@newspim.com 라슬로 크러스너호르커이는 헝가리 현대문학의 거장으로 평가받으며, 그의 작품들은 난해한 문체와 종말론적인 테마로 유명하다. 1954년생인 크러스너호르커이는 대학에서 법학과 헝가리문학을 전공하면서 출판사에서 편집자로 일했다. 대학졸업후 전업 작가의 길을 택한 그는 1985년 데뷔작인 '사탄탱고'로 문학성을 인정받으면서 명성을 얻었다. 1990년대 초반에는 몽골, 중국에서 거주했으며 '저항의 멜랑꼴리'와 '전쟁과 전쟁'을 발표한 이후 미국, 스페인, 일본 등 다양한 지역에서 생활해왔다. 2015년에는 헝가리 최초로 맨부커상 국제 부문을 수상했고, 매년 노벨문학상 후보의 한 사람으로 거론돼 왔다. '파멸''사탄탱고''런던에서 온 사나이''토리노의 말'등 각본을 쓰기도 했다. 수전 손택은 "크러스너호르커이는 현존하는 묵시록 문학 최고 거장이다"라고 평하기도 했다. 국내에도 번역되어 소개된 '사탄탱고'는 공산체제 하에서 무기력하고 비참하고 곤궁하게 살아가는 인간 군상들의 이야기를 담고 있다. oks34@newspim.com 2025-10-09 20:47
사진
'국정자원 화재' 1등급 복구율 62.5% [서울=뉴스핌] 고다연 기자 = 국가정보자원관리원(국정자원) 화재로 마비된 정부 전산시스템이 709개로 정정됐다. 화재로 멈춘 일부 시스템은 대구센터나 대전센터 내 타 전산실로 이전해 복구에 속도를 높인다는 계획이다.  김민재 중앙재난안전대책본부(중대본) 제1차장은 9일 브리핑을 통해 화재 관련 상황과 복구 진행현황을 발표했다. [서울=뉴스핌] 윤호중 중앙재난안전대책본부장(행정안전부 장관)이 9일 오전 정부서울청사에서 국가정보자원관리원 행정정보시스템 화재 관련 중대본 회의를 주재하고 모두 발언을 하고 있다. [사진=행정안전부] 2025.10.09 photo@newspim.com 브리핑에 따르면 국가정보자원관리원 통합운영관리시스템인 엔탑스(nTOPS)의 데이터가 복구돼 대전센터의 전체 시스템 목록을 확인할 수 있었다. 이후 부처와 확인 과정을 거쳐 시스템 목록을 709개로 확정했다. 기존에 정부가 공지한 647개에서 62개가 추가된 것이다.  이는 우체국금융, 공직자통합메일과 같은 일부 시스템이 기능별로 세분화돼 시스템 수가 증가했고, 온나라문서 시스템은 기관별로 있던 목록이 정부업무관리시스템으로 통합되는 등 목록 변화에 따른 것이다. 현재 목록의 등급별 시스템 수는 1등급 40개, 2등급 68개, 3등급 261개, 4등급 340개다. 화재로 장애가 발생한 정부 전산시스템은 이날 12시 기준으로 193개(27.2%) 시스템이 복구됐다. 1등급 시스템 40개 중에서는 25개(62.5%)가 복구돼 운영 중이다. 또 이달 말까지 도입 예정이던 장비를 연휴 중 도입해 현재까지 서버 90식, 네트워크 장비 64식 등 198식의 전산장비를 신규로 도입했다. 중대본은 장비 설치가 완료되는 15일 이후부터는 복구되는 시스템이 빠르게 늘어날 것으로 예상된다고 전했다.  중대본에 따르면 분진 및 화재 피해를 입은 5층 전산실의 시스템은 소관 부처와의 협의 및 세부 검토를 거쳐 대구센터로 이전하거나 대전센터 내 타 전산실로 이전해 복구할 예정이다. 김 차장은 "5층의 시스템 전체를 대구센터로 이전하는 것보다 대전센터에서 신속히 장비를 수급하여 복구하는 것이 효율적일 것이라는 기술적 판단을 반영했다"고 밝혔다. 대전센터는 5전산실 및 6전산실에 신규장비를 설치해 시스템을 복구하고, 대구센터 이전 시스템은 민간 클라우드사와 소관부처 간의 협의가 완료되는 대로 조속히 이전할 계획이다. gdy10@newspim.com 2025-10-09 14:43
기사 번역
결과물 출력을 준비하고 있어요.
기사제목
기사가 번역된 내용입니다.
종목 추적기

S&P 500 기업 중 기사 내용이 영향을 줄 종목 추적

결과물 출력을 준비하고 있어요.

긍정 영향 종목

  • Lockheed Martin Corp. Industrials
    우크라이나 안보 지원 강화 기대감으로 방산 수요 증가 직접적. 미·러 긴장 완화 불확실성 속에서도 방위산업 매출 안정성 강화 예상됨.

부정 영향 종목

  • Caterpillar Inc. Industrials
    우크라이나 전쟁 장기화 시 건설 및 중장비 수요 불확실성 직접적. 글로벌 인프라 투자 지연으로 매출 성장 둔화 가능성 있음.
이 내용에 포함된 데이터와 의견은 뉴스핌 AI가 분석한 결과입니다. 정보 제공 목적으로만 작성되었으며, 특정 종목 매매를 권유하지 않습니다. 투자 판단 및 결과에 대한 책임은 투자자 본인에게 있습니다. 주식 투자는 원금 손실 가능성이 있으므로, 투자 전 충분한 조사와 전문가 상담을 권장합니다.
안다쇼핑
Top으로 이동