전체기사 최신뉴스 GAM
KYD 디데이
산업 생활경제

속보

더보기

[김정호의 4차혁명 오딧세이] 인공지능의 소통 방법

기사입력 : 2019년07월22일 08:00

최종수정 : 2019년08월06일 19:35

※ 본문 글자 크기 조정

  • 더 작게
  • 작게
  • 보통
  • 크게
  • 더 크게

※ 번역할 언어 선택

김정호 교수.

펀치 카드의 추억

필자가 대학 1학년때 배운 컴퓨터 언어가 ‘포트란’이라는 과학기술용 컴퓨터 언어였다. 이러한 컴퓨터 언어란 인간과 컴퓨터의 소통을 가능하게 해주는 도구이다. 그 포트란은 주로 수학과 과학기술 계산에 편리한 컴퓨터 언어였다. 1980년대인 그때 학교에서 포트란 언어를 읽고 실행하는 컴퓨터가 IBM360/380 시리즈로 기억 한다. 그런데 프로그램을 직접 짜면 ‘펀치카드’라는 두꺼운 종이에 구멍이 뚫리는 방식으로 프로그램이 기록이 된다.

지금 생각해 보면 아주 원시적인 기록이며 컴퓨터 입력 방식이다. 타이프 치듯이 프로그램을 입력하면 이 펀치카드 종이에 구멍이 뚫린다. 이렇게 완성된 이 수 십장, 또는 수 백장의 펀치카드 뭉치를 학교 전산실에 제출하고 그 이후 1-2일 후에 계산 결과를 얻는다. 그때 계산 결과는 종이에 숫자 형식의 데이터로 프린트 되어 나온다. 그러니 1980년대초 컴퓨터의 입력은 종이에 구멍이 뚫린 펀치카드였고, 출력은 프린트 용지였다. 종이가 많이 필요했다. 이때 프린트 용지 맨 바깥쪽에는 프린트 기기에 쉽게 연결이 되게 작은 구멍이 아래 위로 쭉 뚫려 있었다. 이 수 백장의 프린트 용지는 추후 전공 관련 수학 수식을 풀때 요긴하게 쓰인 ‘이면지’였다. 종이가 이면지이자 컴퓨터와의 소통 방식이었다.

그런데 한번 포트란 프로그램에서 실수를 하면 몇 일이 지난 후에야 그 결과를 보고, 다시 고치고 입력해야 한다. 디버깅에 시간이 엄청 많이 걸린다. 그래서 프로그램을 짤 때 실수를 최소화해야 한다. 그때 필자는 학교를 전철을 타고 다녔는데, 전철에 앉아 펀치카드에 입력된 프로그램의 오류를 찾기 위해 몇 번이고 다시 검토하고 읽어 보기도 한 기억이 난다. 이처럼 이러한 초기 컴퓨터의 입출력 방식은 수시로 고치고 편집하거나 다시 실행하기 어려웠다. 그리고 종이의 낭비가 심했다고 볼 수 있다. 요즘 말로 ‘copy’, ‘paste’ 가 불가능하다. USB 에 작게 담거나 인터넷으로 파일을 보낼 수도 없다. 그때는 펀치카드 한 개의 박스로 담아 이동했다. 시간과 비용이 많이 드는 소통방식이다.

그 이후 몇 년이 지나 애플 8비트 컴퓨터가 학과에 한 대가 도입이 되었다. 이제는 펀치카드나 프린트 종이 필요 없이 화면을 보고, 프로그램을 편집하고, 입력하고, 그 계산 결과도 바로 화면으로 보았다. 컴퓨터와의 소통에 종이가 사라지기 시작했다. 편집이나 수정은 한 줄, 한 줄 했다. 요즘처럼 화면 전체를 왔다 갔다 하면서 고친 것이 아니라, 한 줄, 한 줄 고쳤다. 그야말로 줄 편집(line editing)이었다. 이 때 사용한 프로그램으로 ‘베이직’이 기억한다. 이후 IBM XT/AT 개인용 컴퓨터가 등장하면서 컴퓨터가 더욱 대중화 되었다. 워드 프로세서도 등장했다. 이제 펀치카드는 사라졌다. 이처럼 컴퓨터가 발전하면서 입력, 출력 장치도, 다르게 말하면 소통 방식도 인간에게 더 편리하게 발전해 왔다. 따라서 인공지능 컴퓨터의 입출력 형태와 소통 방식도, 또 다시 진화할 것으로 기대한다.

인공지능의 입력과 출력

현재 가장 많이 사용되고 있는 대표적인 인공지능 알고리즘이 CNN(Convolution Neural Network)이다. 주로 사진 이미지나 동영상을 판독하고, 이해하는데 사용하는 알고리즘이다. 특히 인터넷과 유튜브에 널린 수많은 사진과 영상 자료가 CNN 학습 데이터가 된다. 이때 컴퓨터가 자동적으로 인터넷에서 읽어서 긁어 모은다. 펀치카드도 필요가 없고 자판기도 필요가 없다. CNN은 이들 사진들을 입력하고, 출력으로는 예를 들어 그 사진 속의 물체를 인식(Classification)하거나 사진(Image) 속의 장면으로 글(Caption)로 쓰거나, 이야기(Text)를 만들 수도 있다. 또는 사진 속의 인물이 다음에 할 행동을 예측(Prediction)하거나 추후 일어날 사건을 예측한다. 또는 화면 속의 상황을 이해(Explain)할 수 있다. 이렇게 CNN의 출력은 ‘Tag(이름), ‘설명문(Caption)’, ‘문학 작품(Text)’이 되기도 한다. 때로는 음성 단어나 스토리로 만들어 출력할 수도 있다. 그리고 더 나아가 그 내용에 맞게 영상도 제작 가능하고, 음악도 창작 가능하고, 그림도 창작 가능하다. 출력으로 창작물을 만들 때 GAN(Generative Adversary Network) 알고리즘이 CNN과 같이 결합될 수 있다. 이 경우 출력은 창작 그림, 시, 문학작품, 음악, 영화도 된다.

입력 ‘사진’을 보고, ‘새’라고 확률(출력)을 제시(Classification)해 주는 CNN의 내부 구조. [출처=KAIST]

인공지능에서 CNN 다음으로 많이 사용하는 알고리즘이 RNN(Recurrent Neural Network)이다. 주로 시간 차이를 두고 순차적으로 입력되는 데이터의 해석과 이를 기초한 미래 예측에 사용된다. 대표적으로 사용하는 말을 알아듣는 인공지능 알고리즘이다. 말은 문법에 따라 순서대로 들어 온다. 그래서 입력의 순서에 따라 의미와 해석이 달라진다. 이 때문에 인공지능이 컴퓨터 내부에서 순차적으로 데이터를 받아 들이고, 순차적으로 학습하고 판단하도록 설계되어 있다. 다른 말로 시간과 순서 개념이 있는 인공지능이다. 그래서 RNN의 입력은 문장 혹은 사람의 말이 된다. 또는 영화의 장면과 장면의 연속이 입력이 될 수 있다.

책 한 권 전체가 RNN의 입력이 될 수도 있다. 그 속에 단어가 순서대로 나열되어 있게 때문이다. 더 나아가 인류가 유사이래 만든 모든 문서, 모든 책이 RNN 의 입력이 될 수 있다. 여기에 전세계 수 백 개 언어의 책과 문서, 녹음 파일 전체가 입력 데이터가 되는 엄청난 분량이 된다. 인공지능 컴퓨터가 책을 모두 쉽고 빠르게 읽는 입력 장치만 개발되면 된다.

전화 상담하면 녹음이 되고, 디지털화되면 그 파일이 바로 RNN의 입력이 된다. 지하철 속에서 주고 받는 대화 모두가 누군가 기록한다면 RNN 입력이 된다. 스마트폰으로 주고 받는 문자와 통화내용도 입력이 된다. 집에 설치된 아마존 인공지능 스피커도 ‘알렉사’도 RNN 입력이 된다. 그래서 CNN의 영상 이미지 이상으로 많은 RNN 입력 데이터가 지구상에 존재한다.

이러한 RNN의 출력은 ‘정답’, ‘독후감’, 설명문’ 또는 ‘다음 문장’이 된다. 입력 데이터를 읽고 이해하고, 그 전체를 요약하거나 문맥을 설명하는 것이 출력도 된다. 또는 그에 해당하는 사진이나 영상을 출력할 수도 있다. 또는 입력 문장에 맞게 음악, 그림, 소설, 영화 등을 창작할 수 있다. 이때는 RNN 과 GAN이 결합해야 한다. 이처럼 RNN의 입력은 문자이나, 녹음, 영상, 책이 되고 출력은 단어, 해설, 또는 창작물이 된다. 이것이 RNN의 소통방식이다.

순서대로 들어오는 입력 문장을 통해 출력으로 해석하거나 단어로 표현하는 RNN 구조. [출처=KAIST]

궁극적인 인공지능의 입출력

결국 인공지능이 사람같이 생각하고, 행동하고 교류하려면 입출력 방식이 인간을 닮은 모습이 아닌가 한다. 결국 인공지능 소통 방식이 인간과 같아야 한다. 그렇게 되면, 인공지능의 입력은 사람처럼 말을 알아 듣고, 눈으로 볼 수 있어야 한다. 그리고 인공지능의 출력은 말을 하거나 글을 쓰거나, 단어로 표현하거나 한 단계 더 나아가, 문장, 소설, 시, 그림, 음악, 영화와 같은 창작물이 될 수 있다. 더 똑똑한 인공지능은 말을 하지 않아도, 문맥이나 표정만 보고 알아서 판단하고 행동을 하면 더 좋다. 궁극적으로 말 끼를 알아듣고, 눈치가 빠른 인공지능이 되어야 한다. 그 때 인공지능은 IQ 뿐만 아니라 EQ 도 좋아 사회성과 도덕성을 가지면 더욱 바람직하다.

미래 자율주행자동차에서는 이런 인공지능의 입출력 방법이 인간과 인공지능 컴퓨터와의 소통과 대화의 방식이 된다. 자율주행자동차의 기능에서 인공지능 자체의 기능도 중요하지만, 인간과의 소통을 위한 입출력 기능도 그에 못지 않게 같이 중요하다. 그래야 완전한 자율주행자동차 시대가 된다. 결국 인공지능이 발전하면서 인공지능의 소통 기술도 함께 발전되어야 한다. 궁극적으로는 소통의 방식은 ‘인간의 모습’을 닮아 간다. 언제인가 인공지능의 소통 방식으로 ‘텔리파시’까지 사용될 수도 있다.

 

[김정호 카이스트 전기 및 전자공학과 교수] joungho@kaist.ac.kr

[뉴스핌 베스트 기사]

사진
[변상문의 화랑담배] 제2회 광복군 변상문의 '화랑담배'는 6·25전쟁 이야기이다. 6·25전쟁 때 희생된 모든 분에게 감사드리고, 그 위대한 희생을 기리기 위해 제목을 '화랑담배'로 정했다.  1940년 9월 17일 중국 중경 가릉호텔에서 성대한 행사가 열렸다. 대한민국 임시정부 광복군 창설식이었다. 미국 한인 동포들이 보내온 돈 4만원으로 조직한 군대였다. 지금 돈으로 환산하면 20억 원 정도 된다. 총사령관 이청천 장군, 참모장 이범석 장군, 제1지대장 이준식, 제2지대장 고운기, 제3지대장 김학규, 제5지대장에 나월환을 임명했다. 지대장은 지금의 사단장에 해당한다. 모두 봉오동 전투, 청산리 전투를 비롯하여 남북 만주에서 전개된 항일무장투쟁에 직접 참여하여 활동한 독립군 출신이었다. 한국광복군 훈련반 제1기 졸업사진. [사진= 독립기념관] 임시정부 주석 김구는 포고문을 통해 "국내외 동포들에게 알립니다. 1940년 9월 17일부로 대한민국 광복군을 창설하였습니다. 광복군은 1907년 8월 1일 일제가 대한제국 군대를 해산한 날이 바로 광복군 창설일임을 선언합니다. 광복군은 구 한국군의 후신으로 33년간에 걸친 의병과 독립군의 항일무장투쟁을 계승한 전통 무장 조직입니다"라고 했다. 대한제국 국군-의병-독립군의 군맥(軍脈)과 군혼(軍魂)을 분명하게 잇고 있음을 천명한 것이다. 부대 편성은 소대, 중대, 대대, 연대, 여단, 사단 6단으로 편성하였다. 총 3개 사단을 조직할 계획이었다. 그러나 인원이 적은 상황에서 우선 지대를 만들고, 각 지대를 구대와 분대로 연계한 전투부대를 구성했다. 임시정부에서 1940년 9월 19일 중국 국민당 정부에 통보한 '한국광복군 총사령부 직원 명단'에 의하면, 부대 규모가 총사령부와 4개 단위부대, 여기에다 조선혁명군 부대까지 포함하여 5000여 명이었다. 임시정부에서는 1941년 12월 연합국의 일원으로 일본에 선전포고했다. 1942년에는 미국 측에 "미국이 제주도를 해방 시켜 주면, 중경에 있는 임시정부를 제주도로 옮긴 후, 광복군이 미군과 함께 한반도 상륙작전을 전개하겠다."라고 제안하였다. 이 제안은 실제로 미국 OSS 부대(지금의 CIA)와 1945년 4월부터 8월까지 강도 높은 국내 진공 작전을 준비했다. 주요 훈련은 3개월 기간에 고공낙하, 암살법(권총에 특수장치를 하여 소리 없이 암살하는 방법), 통신(암호의 작성 및 해독법, 무전기 조작 및 수리), 교란 행동, 정보수집, 폭파 등 이었다. 일과는 07:00∼12:00 오전 훈련, 13:00∼18:00 오후 훈련, 19:00∼22:00 야간 훈련이었다. 주요 임무는 대한민국으로 낙하산과 잠수함으로 침투하여 미 공군 공습에 필요한 지형 등의 정보를 제공하고 일본군 군사시설 탐지 및 파괴 지하 유격대를 조직하여 연합군 상륙작전 시 제2선에서 연결하는 작전이었다. 마침내 1945년 8월 7일 모든 훈련을 마치고 국내진공작전 출정식을 개최했다. 개시일은 8월 10일이었다. 출정식 때 장준하 경기도 공작 반장은 "나는 조국광복을 위해 죽음을 선택했습니다. 내가 나의 죽음을 지불하면, 내 능력껏 그 대가가 조국을 위해서 결제될 것입니다. 나의 각오는 한 장의 정수표입니다. 발생인은 장준하, 결제인은 조국입니다"라는 유서까지 작성했다. / 변상문 국방국악문화진흥회 이사장 2025-09-08 08:00
사진
'포스트 이시바' 누구?...고이즈미·다카이치 선두 [서울=뉴스핌] 오영상 기자 = 이시바 시게루 일본 총리가 자민당 총재직 사임을 공식화하면서, 일본 정국의 관심은 차기 자민당 총재 선거로 쏠리고 있다. 집권당 총재가 곧 총리직을 맡는 일본 정치 구조상 이번 총재 선거는 사실상 다음 총리를 뽑는 절차다. 자민당은 조만간 새로운 총재 선거 일정을 확정할 예정이다. 이번 선거에서는 지난 2024년 9월 총재 선거에서 이시바 총리와 경합했던 주요 인사들이 다시 출마할 가능성이 높다. 고이즈미 신지로 농림수산상, 다카이치 사나에 전 경제안보담당상, 하야시 요시마사 관방장관, 모테기 도시미쓰 전 간사장, 고바야시 다카유키 전 경제안보담당상 등이 후보군으로 거론된다. 정국 운영이 소수 여당이라는 제약 속에서 이루어지는 만큼, 차기 총재가 야당과 어떻게 연대할지, 어떤 연립 구도를 짤지가 최대 쟁점으로 꼽힌다. '포스트 이시바' 후보로 꼽히고 있는 고이즈미 신지로 일본 농림수산상 [사진=로이터 뉴스핌] ◆ 고이즈미·다카이치 선두권 현재 여론조사에서는 고이즈미 농림수산상과 다카이치 전 경제안보상이 선두권을 형성하고 있다. 니혼게이자이신문 지난달 29~31일 실시한 여론조사에 따르면 차기 총리에 적합한 인물로 다카이치가 23%, 고이즈미가 22%를 기록했다. 나란히 1, 2위다. 자민당 지지층으로 한정하면 고이즈미가 32%로, 다카이치(17%)를 크게 앞서는 것으로 나타났다. 다카이치는 2024년 총재 선거에서 1차 투표에서 1위를 차지했으나 결선에서 이시바에게 역전패했다. 고이즈미 역시 의원 표에서 선두에 올랐지만 당원 표에서 밀리며 결선에 오르지 못했다. 두 사람 모두 당내 기반과 대중적 인지도를 겸비해 차기 선거에서도 가장 주목받는 주자들이다. 고이즈미 농림수산상은 1981년생(44세)으로 고이즈미 준이치로 전 총리의 차남이다. 2009년 중의원 첫 당선 이후 줄곧 '포스트 아베', '차세대 리더'로 주목받았다. 환경상, 농림수산상을 거쳤으며 개혁 성향과 젊은 이미지로 지지층을 넓혔다. 2024년 총선에서 당 선거대책위원장을 맡았으나 참패 책임을 지고 물러났다. 이후 농림수산상으로 복귀해 쌀 유통 개혁 등 농정 개혁에 매진했다. 대중적 인지도와 '고이즈미 브랜드'라는 정치 자산이 최대 강점으로 꼽힌다. 다카이치 전 경제안보상은 1961년생(64세)으로 보수 강경파로 분류되는 여성 정치인이다. 2021년 총재 선거에 첫 도전해 아베 신조 전 총리의 전폭적 지원을 받으며 3위를 기록했다. 2024년 총재 선거 1차 투표에서 최다 득표(의원 72표, 당원 109표)를 얻었으나 결선에서 이시바 총리에게 역전 당했다. 유일한 여성 후보로서 '보수의 아이콘' 이미지를 갖고 있으며, 아베 전 총리와 가까웠던 의원 그룹이 주된 지지 기반이다. 이시바 정권에서 당직 제안을 거절하며 독자 노선을 유지해 왔다. '포스트 이시바' 후보로 꼽히는 다카이치 사나에 전 일본 경제안보담당상 [사진=로이터 뉴스핌] ◆ 하야시·모테기 등 잠룡도 주목 고이즈미와 다카이치 두 선두 주자 외에 잠룡들의 행보도 주목된다. 하야시 요시마사 관방장관은 옛 기시다파 일부의 지지를 받고 있으며, 이시바 정권의 2인자로서 존재감을 키워왔다. 모테기 도시미쓰 전 간사장은 당내 경험과 풍부한 인맥을 강점으로 삼고, 아소 다로 전 부총리와 교류를 통해 지지 기반을 다지고 있다. 고바야시 다카유키 전 경제안보담당상은 5선 의원으로, 동기 의원들과 옛 니카이파의 지원을 받으며 출마 가능성을 열어두고 있다. ◆ 총재 선거 이후에도 정국 '안갯속' 자민당 총재 선거는 국회의원 표와 당원·당우 표를 합산하는 방식이 원칙이지만, 긴급 시에는 국회의원과 지방 지부 대표만 투표하는 '양원 의원 총회' 방식으로 대체될 수 있다. 이 경우 의원 표의 비중이 커져 파벌 역학이 중요해진다. 차기 총재가 선출되더라도 곧바로 정권 안정으로 이어진다는 보장은 없다. 일본 헌법상 총리는 국회에서 지명되는데, 자민·공명 양당은 현재 중의원과 참의원 모두에서 과반을 잃은 상태다. 따라서 야당이 단일 후보를 세워 결집할 경우, 자민당 총재가 총리로 지명되지 못할 가능성도 배제할 수 없다. 자민당 총재가 총리에 오르더라도, 예산안·세제 개혁 법안 등 국정 운영은 야당 협조 없이는 불가능하다. 이런 이유로 차기 총재는 곧바로 '연립 확대'나 '정책 연대'를 추진할 수밖에 없고, 총재 선거 과정에서도 어떤 야당과 손을 잡을지가 핵심 화두가 된다. 결국 이번 자민당 총재 선거는 단순히 차기 지도자를 뽑는 절차를 넘어, 일본 정치가 다당제 속에서 어떤 연립 구도를 구축할지 시험대가 되는 분기점으로 평가된다. goldendog@newspim.com 2025-09-08 09:26
기사 번역
결과물 출력을 준비하고 있어요.
기사제목
기사가 번역된 내용입니다.
종목 추적기

S&P 500 기업 중 기사 내용이 영향을 줄 종목 추적

결과물 출력을 준비하고 있어요.

긍정 영향 종목

  • Lockheed Martin Corp. Industrials
    우크라이나 안보 지원 강화 기대감으로 방산 수요 증가 직접적. 미·러 긴장 완화 불확실성 속에서도 방위산업 매출 안정성 강화 예상됨.

부정 영향 종목

  • Caterpillar Inc. Industrials
    우크라이나 전쟁 장기화 시 건설 및 중장비 수요 불확실성 직접적. 글로벌 인프라 투자 지연으로 매출 성장 둔화 가능성 있음.
이 내용에 포함된 데이터와 의견은 뉴스핌 AI가 분석한 결과입니다. 정보 제공 목적으로만 작성되었으며, 특정 종목 매매를 권유하지 않습니다. 투자 판단 및 결과에 대한 책임은 투자자 본인에게 있습니다. 주식 투자는 원금 손실 가능성이 있으므로, 투자 전 충분한 조사와 전문가 상담을 권장합니다.
안다쇼핑
Top으로 이동