전체기사 최신뉴스 GAM
KYD 디데이
산업 생활경제

속보

더보기

[김정호의 4차혁명 오딧세이] 인공지능 강의와 실전 실력의 차이

기사입력 :

최종수정 :

※ 본문 글자 크기 조정

  • 더 작게
  • 작게
  • 보통
  • 크게
  • 더 크게

※ 번역할 언어 선택

[편집자] 4차 산업혁명은 모든 사물과 인간을 연결하여 빅데이터를 모으고, 이를 이용하여 인공지능으로 학습해, 결국 인공지능이 인간을 대체하는 시대를 말한다. 이러한 4차 산업혁명의 물결이 산업뿐만 아니라 경제, 사회, 정치 등 전 분야에 걸쳐서 막대한 변화를 일으키고 있다.

글로벌뉴스통신사 뉴스핌은 '김정호의 4차혁명 오딧세이' 칼럼을 매주 연재하며 4차 산업혁명의 본질과 영향, 그리고 전망을 독자들에게 쉽게 소개하고자 한다. 4차 산업혁명의 핵심은 바로 인공지능, 빅데이터, 클라우드 컴퓨팅으로 표현할 수 있으며 그 핵심 부품이 반도체이다. 이들 핵심 기술의 개념과 원리, 응용을 설명하여 일반 독자들이 4차 산업혁명에 대해서 공감하고 이해하며 더 나아가 개인과 기업, 국가의 미래를 계획하는 것을 돕고자 한다.

김정호 카이스트(KAIST) 전기 및 전자공학과 교수는 서울대 전기공학과를 졸업하고 미국 미시건대에서 박사 학위를 받았다. AI대학원 겸임교수, IEEE펠로우, 카이스트 ICT석좌교수, 한화 국방 인공지능 융합연구 센터장, 삼성전자 산학협력센터장 등을 겸하고 있다.

인공지능 강의 방식: 칠판과 파워포인트 그리고 유튜브

학교에서의 강의 방식에는 보통 세 가지가 있다. 전통적으로 칠판을 사용한 강의가 있고, 최근에는 파워포인트를 이용한 강의가 많다. 또는 학생들의 얼굴을 직접 보지 않고 인터넷 유튜브로 강의할 수도 있다.

김정호 교수

그런데 최근 인공지능 관련 과목과 단기강좌 강의를 하면서 과연 '인공지능 강의'에는 어떤 방법이 가장 좋을지 고민하며 시행착오를 겪고 있다.

학생이 지식을 새로 배울 때 오래 기억하고 정확하게 개념을 정립하는 방법으로 4가지 방법이 있다. 제일 먼저 강의를 수동적으로 듣는 방식이다. 그다음이 강의 내용을 받아 적는 방식이다. 다음 단계로는 강의 내용으로 토론하는 방법이다. 마지막으로 진짜 공부하는 방식은 학생이 강의 내용을 상대방에게 설명하는 방법이다. 이렇게 수동적인 수업 방식보다는 적극적인 참여 방식의 수업 효과가 몇 배 좋다.

교수는 강의를 한다. 강의하면서 사실 가르치는 것이 아니라 오히려 본인이 공부한다. 남에게 정확히 설명하려면 본인 이론부터 명확히 정립되어야 하기 때문이다.

그런데 최근에는 대학에도 파워포인트 슬라이드를 이용하는 강의가 많이 확산하고 있다. 강의 슬라이드를 화면에 띄우고 그 화면에 밑줄을 긋거나 글자를 써 가면서 강의를 한다. 파워포인트로 만들어진 강의 자료는 미리 인터넷에 올려놓기도 한다.

하지만 필자는 파워포인트 강의에 상당히 어려움을 겪는다. 자료 준비 시간도 많이 들지만, 그것보다는 수업의 속도와 분량이 엄청 늘어난다. 1시간에 100장의 슬라이드 강의도 가능하다.

그렇지만 수업이 일방적으로 되기 쉽다. 수동적인 수업 방식이어서 수업의 효과가 매우 의문이다. 엄청 많이 강의하는 것 같지만, 학생들 머릿속에 얼마나 강의 내용이 남아 있을지 회의적이다.

칠판을 이용해 강의를 할 수 있다. 필자는 강의할 때 칠판에 분필로 글씨를 쓰거나 그림으로 그려가면서 강의하는 방법을 제일 좋아한다. 필자가 강의하는 과목은 보통 전자기학, 마이크로파 공학, EMI, 반도체 패키지, 인공지능 과목들이다.

이들 과목의 공통점이 수학 공식과 다이어그램이 많다는 점이다. 설명할 때 수학 공식을 유도하거나 다이어그램으로 설명하고 개념을 쌓는다. 이러한 수학 공식들이 파워포인트로 쓱 지나가면 머리에 하나도 남지 않는다. 교수나 학생이나 마찬가지이다.

그래서 수학 부문을 강의할 때는 수식 전개 전체를 한 줄 한 줄 천천히 칠판에 쓰면서 한다. 어느 경우 칠판 전체가 수학 공식 유도로 다 채워질 때도 있다. 여기에는 가정으로 시작하고, 관련된 수식을 대입하고 유도하고, 마침내 맨 마지막에 의미가 있는 수식을 유도한다.

그리고 그 의미와 배경을 논의한다. 그 의미를 그래프나 다이어그램으로 변환해서 설명하고 토론한다. 그 과정을 학생도 따라 적으면서 수식 전개를 따라간다. 그러면서 과정을 생각한다. 그래프를 같이 그리면서 생각도 같이한다. 어떤 경우 학생을 나오라고 해서 한 개씩 같이 푼다. 학생 참여를 유도하면 최고의 강의가 된다. 이렇게 칠판 강의가 더 좋다.

다만 수업 속도는 느려지고, 분량은 적다. 그래도 하나라도 제대로 배우는 것이 낫다. 필자는 좌우로 긴 칠판에 수식을 꽉 채우는 것을 좋아한다. 그런데 칠판 대신에 화이트보드를 사용할 수 있다. 그러나 화이트보드에 사용하는 마커는 휘발성 냄새가 난다.

그래서 필자는 인공지능 강의에 3가지 강의 방법을 섞어서 쓴다. 각각 장단점을 최대한 활용한다. 학생들이 예습을 유튜브로 하고, 전체를 설명하는 부분 세미나는 슬라이드로 한다. 그러나 대부분의 강의와 이론 부분은 칠판을 사용한다.

화이트보드에 쓴 인공지능 수학 공식과 다이어그램. [출처=KAIST]

인공지능 교육의 5가지 단계

인공지능을 활용하고 전문가가 되기 위해서는 5단계의 교육 과정이 있다고 본다. 1) 기본 지식의 습득 2) 인공지능 이론과 수학 이론의 확립 3) 실습을 통한 경험 4) 석‧박사 학위 과정 5) 실전 역량 구축의 5단계로 본다.

제일 먼저 단계에서는 기본 배경과 원리, 용도, 시장 등 배경이 되는 지식의 습득이 필요하다. 여기에서 인공지능이 왜 4차 산업혁명의 핵심인지, 왜 그렇게 강력한지, 왜 빅데이터가 필요한지, 어디까지 발전해 왔는지, 앞으로 어디에 쓰일지, 인류와 사회에 미치는 영향을 공부한다.

이 도입 부분은 파워포인트로 수강해도 무방하다. 화려한 그래픽이 들어간 슬라이드, 동영상 등은 교육 효과를 높인다. 유튜브 강의도 도움이 많이 된다.

다음 단계는 인공지능 이론의 학습 과정이다. 인공지능 기계학습 중에서 딥러닝 분야의 구조와 학습과정은 수학 이론이 많이 사용된다. 벡터와 행렬을 포함하는 선형대수와 편미분, 최적화 이론 등이 사용된다.

여기에 더해 통계, 확률, 게임 이론도 사용된다. 특히 역방향 학습(Back Propagation) 이론과 엔트로피 이론, 활성화 함수, 비용함수, 최적화 함수 등 다양한 수학이 중요한 개념이 된다.

그러니 이 과정은 수식을 하나하나 유도하면서 따라가야 완전한 본인의 지식이 된다. 이 수학 부문을 자신 있게 이해해야 확실하게 실제 문제에 인공지능을 적용할 수 있다.

수학은 아름답다. 컴퓨터는 부지런하다. 둘이 결합해서 인공지능을 강력하게 한다. 인공지능 수학과 이론 수업은 칠판을 사용하는 것이 좋다. 칠판을 꽉 채워도 좋고, 그림으로 다 채워도 좋다. 인공지능 수업에서는 전전파 학습(Forward Propagation), 역전파 학습(Backward Propagation), 경사하강법(Gradient Descent), 활성화 함수(Activation Function), 비용함수(Cost Function) 등 수학이 따른다. 그리고 딥러닝 구조는 다이어그램으로 표현한다. 이 부분 강의는 칠판으로 한다.

인공지능 강의 슬라이드의 학습 과정 이론을 설명하는 수학 공식. [출처=KAIST]

실습과 프로젝트: 강의실과 실전의 차이 메우기

다음 3단계에서는 간단한 예제를 통해서 실습할 수 있다. 아무리 이론을 이해한다고 해도 직접 해봐야 기억과 경험이 오래간다. 다양한 예제는 인터넷으로 구할 수 있고, 학습을 위한 데이터도 인터넷에서 구한다. 파이선(Phython)을 설치하고 텐서플로우(Tensor Flow)도 설치해서 사용한다.

여기서 어려운 점은 기초적인 컴퓨터 언어와 논리, 절차를 이해해야 한다는 점이다. 간단한 예제 하나를 해보려 해도 꼬박 하루는 배워야 할 수 있다. 예제로는 기초적으로 통계 예측(Linear Regression, Logistic Regression)을 이용한 분류 예측(Classification)을 할 수도 있다.

한 발자국 더 들어가면 CNN(Convolution Neural Network), LSTM(Long Term Short Term Memory)을 이용한 이미지 분류, 자연어 처리에서 시작해서 게임을 강화학습(Reinforcement Learning)으로 실습해 보고, GAN(Generative Adversary Network)을 이용해 그림을 그려 볼 수 있다.

이렇게 실습을 통해서 이론을 검증하고 경험을 쌓는다. 여기까지 과정은 단기과정으로 짧게는 1주일, 길게는 1학기 과정이 된다.

길게는 석사, 박사 학위 과정도 가능하다. 석‧박사 학위 과정에서는 단순히 실습이 아니라 자신만의 독자적인 이론이나 모델, 방법, 구조를 새롭게 제안하고 성능 향상을 증명해야 한다. 여기까지가 4단계의 인공지능 공부 과정이다.

인공지능 실습 예제. [출처=KAIST]

인공지능을 배우고 성장하는 단계로 마지막 5단계는 현실의 문제를 인공지능으로 해결하는 과정이다. 다른 말로 비즈니스에 인공지능 기술을 적용해서 프로젝트의 목표를 달성하는 작업이라 할 수 있다. 이 경험을 통해서 진정한 인공지능 전문가로 태어난다. 이 단계를 마치면 연봉 3억을 받을 수 있고, 기업과 대학에서 서로 모셔 가려 할 것이다. 바로 마지막 5단계는 현장 실전 경험이다.

일단 강의, 실습 정도와 현장 실전의 차이에는 몇 가지가 있다. 일단 규모의 차이이다. 학습에 필요한 빅데이터 자체를 확보해야 한다. 거기에 이름(Label)이 붙어 있는 데이터 확보가 되어야 한다. 그리고 이 대규모 빅데이터를 저장하는 저장장소와 수천 대의 GPU 컴퓨터를 확보해야 하고, 설치할 부지와 운영 인력을 확보해야 한다.

이런 점에서 학교 강의실과의 차이가 아주 크다. 그리고 이 정도 규모의 데이터를 인공지능으로 처리할 수 있는 알고리즘과 기술자를 확보해야 한다. 이 인공지능 서비스도 필요할 때 실시간으로 이루어져야 한다. 안전과 보안도 보장되어야 한다.

그리고 이런 시설과 데이터를 이용한 인공지능 결과가 기업의 사업 목표에 부합하고, 이윤을 만들어야 한다. 그러기 위해서는 최소한의 투자와 시간 안에 달성되도록 알고리즘 설계가 되어야 한다.

여기까지 경험해보면 5단계 전문가가 된다. 시간과 노력과 기회를 투자해야 한다. 여기에 강의실과 실전의 차이가 난다. 강의의 한계를 실습과 프로젝트를 통해서 보완하고 확인한다. 이 경험을 거쳐야 진정한 인공지능 인력이 된다. 5단계까지 마친 인공지능 인력이 전 세계적으로 모자라다.

이렇게 보면 인공지능 공부 방식도 단계별이고, 융합적이다. 유튜브, 칠판과 파워포인트, 그리고 실습, 학위 과정, 실전 프로젝트 수행을 포함한 단계적 과정이 필요하다. 강의와 교육 과정을 만드는 것 자체도 창의적이어야 한다. 인공지능 기술처럼 남이 가지 않을 길을 먼저 개척할 때 특히 그렇다.

김정호 카이스트 전기 및 전자공학과 교수 joungho@kaist.ac.kr

[뉴스핌 베스트 기사]

사진
발견 어려운 췌장암 AI로 조기 진단 [베이징=뉴스핌] 조용성 특파원 = 중국 알리바바가 개발한 AI 솔루션이 췌장암 조기 진단을 해내는 것으로 나타났다. 췌장암은 발견하기가 극히 어려운 암으로, 보통 말기에 발견된다. 때문에 췌장암은 진단 후 5년 생존율이 10%에 불과하다. 중국의 AI 솔루션이 중국의 한 병원에서 시범 적용되고 있으며, 이를 통해 췌장암 조기 발견 사례가 늘고 있다고 뉴욕타임스 중문판이 6일 전했다. 알리바바가 개발한 이 솔루션의 명칭은 'PANDA(인공지능 췌장암 검사 시스템)'이다. 촬영된 CT 영상을 AI가 판독해 췌장암 확진을 결정하는 소프트웨어다. PANDA는 중국 내 여러 병원에서 임상을 진행 중이다. 이 중 한 곳은 닝보(寧波)대학 인민병원이다. 닝보대학 인민병원은 2024년 11월 PANDA를 도입해 임상시험을 시작했다. 현재까지 PANDA는 18만 건 이상의 복부 혹은 흉부 CT를 분석했고, 이를 통해 20건 이상의 췌장암을 발견했다. 이 중 14건은 조기 진단이었다. 췌장암은 조기 진단될 경우 수술을 통한 제거가 가능하다. 한 환자의 경우 복부 팽만감과 메스꺼움의 증상으로 병원을 찾아 CT를 촬영했으며, 췌장 전문 검사를 받지 않았지만, 췌장암 판정을 받았다. 현지 의사는 "PANDA의 식별이 없었으면 결코 췌장암 판정을 못 하는 상황이었으며, PANDA로 인해 환자의 췌장암이 조기에 발견됐고 수술을 통해 완치될 수 있었다"며 "AI가 환자의 생명을 구했다고 볼 수 있다"고 소개했다. 아직은 오차율이 비교적 높은 상태다. PANDA는 그동안 1400건의 스캔 영상에 대해 췌장암 가능 경고를 했다. 전문의들은 이 중 300개에 대해서만 정밀 진단이 필요하다고 판단했다. 이후 300명의 환자는 재검사를 받았다. 이 중 20여 건이 췌장암으로 판정받았다. PANDA를 개발한 곳은 알리바바 산하 다모(達摩)연구소다. 연구소의 베테랑 알고리즘 전문가는 2000명 이상의 췌장암 환자의 CT 영상을 취득해 방사선 전문의들에게 병변 위치를 수작업으로 표시하도록 요청했다. 그리고 결과물을 AI 학습으로 훈련시켰으며, 이를 통해 PANDA는 선명도가 낮은 CT 이미지에서도 췌장암을 식별할 수 있게 됐다. 알리바바의 PANDA는 지난해 4월 미국 식품의약국(FDA)으로부터 패스트트랙 의료 기기로 선정됐다. 해당 제도는 성능이 뛰어난 의료 기기의 경우 임상 시험 기간을 단축시켜준다. 캘리포니아 대학의 한 교수는 "임상 경험이 풍부한 전문가보다 PANDA가 의사들에게 더 가치가 있을 것"이라며 "PANDA와 같은 솔루션은 지방 병원이나 진료소의 유용한 보조수단이 될 것"이라고 평가했다. 중국 병원 자료사진. [신화사=뉴스핌 특약] ys1744@newspim.com 2026-01-06 11:36
사진
9월 북극항로 첫 시범운항 [부산=뉴스핌] 최영수 선임기자 = 해양수산부가 올해 북극항로 개척에 본격 나선다. 오는 8월 말에서 9월 중 컨테이너선(3000TEU급)을 투입해 시범운항을 실시할 예정이다. 이를 위해 상반기 중 시범운항에 참여할 선사 및 화주를 모집해 선정할 방침이다. ◆ 북극항로 개척 원년…첫 시범운항 주목 김성범 해양수산부 장관직무대행(차관)은 지난 5일 부산청사 해양수산부에서 신년 기자간담회를 열고 이 같은 내용을 포함한 새해 정책방향을 제시했다. 그는 "오는 9월 전후에 시범운항을 할 수 있도록 준비하고 있다"면서 "3000TEU급 컨테이너선을 투입할 예정"이라고 밝혔다. 이어 "3000TEU급 컨테이너선이 대형에 비하면 작다고 할 수 있지만, 크기는 중요하지 않다"면서 "중국이 지난해 운항한 선박도 4000TEU급 수준"이라고 설명했다. 김성범 해양수산부 장관직무대행(차관)이 지난 5일 부산청사 해양수산부에서 신년 기자간담회를 열고 새해 정책방향을 설명하고 있다. [사진=해양수산부] 2026.01.06 dream@newspim.com 김 대행은 "시범운항을 위해 올해 상반기 중에는 선사와 화주를 선정할 예정"이라면서 "시범운항이라는 면에서 여러 가지 인센티브를 제공할 방침"이라고 밝혔다. 다만 "선사가 선정되면 선사가 희망하는 게 있기 때문에 이를 반영해서 잘 결정하겠다"고 덧붙였다. 부산신청사 건립과 관련해서는 "내년 예산에 (신청사)설계비를 반영할 예정"이라면서 "내년부터 구체적인 (청사 건립)절차를 시작할 계획"이라고 밝혔다. UN해양총회 개최지와 관련해서는 "개최도시 선정은 UN과도 협의해야 할 사항"이라면서 "(유치에)관심 있는 도시들과 협의해서 결정하겠다"고 설명했다. ◆ 부산해양수도 조성 첫발…유관기관 모으기 가속 김 대행은 지난 5일 부산청사에서 열린 해수부 시무식에서 신년사를 통해 "북극항로 시대에 대비한 동남권 대도약을 실현하겠다"고 제시했다. 이를 위해 해양수산분야 유관기관을 부산으로 모으는 작업이 본격화될 전망이다. 해수부 산하기관들도 올해 부산 이전이 본격화될 것으로 보인다.  김 대행은 "기업, 공공기관, 해사법원, 동남권투자공사 등이 집적화된 해양클러스터 조성을 추진해 나가겠다"면서 "부산항을 세계 최대 규모의 항만으로 개발하고, 터미널 운영 효율화와 종합 항만서비스 제공을 통해 글로벌 물류 요충지로 성장시키겠다"고 다짐했다. 이어 "북극항로 시대에 대비한 동남권 대도약을 실현하겠다"면서 "부산에서 로테르담까지 북극항로 시범운항을 추진하고 해양수도권 육성전략을 조속히 수립하겠다"고 강조했다. 2026년 해양수산부 업무계획 [자료=해양수산부] 2025.12.23 dream@newspim.com dream@newspim.com 2026-01-06 11:00
기사 번역
결과물 출력을 준비하고 있어요.
종목 추적기

S&P 500 기업 중 기사 내용이 영향을 줄 종목 추적

결과물 출력을 준비하고 있어요.

긍정 영향 종목

  • Lockheed Martin Corp. Industrials
    우크라이나 안보 지원 강화 기대감으로 방산 수요 증가 직접적. 미·러 긴장 완화 불확실성 속에서도 방위산업 매출 안정성 강화 예상됨.

부정 영향 종목

  • Caterpillar Inc. Industrials
    우크라이나 전쟁 장기화 시 건설 및 중장비 수요 불확실성 직접적. 글로벌 인프라 투자 지연으로 매출 성장 둔화 가능성 있음.
이 내용에 포함된 데이터와 의견은 뉴스핌 AI가 분석한 결과입니다. 정보 제공 목적으로만 작성되었으며, 특정 종목 매매를 권유하지 않습니다. 투자 판단 및 결과에 대한 책임은 투자자 본인에게 있습니다. 주식 투자는 원금 손실 가능성이 있으므로, 투자 전 충분한 조사와 전문가 상담을 권장합니다.
안다쇼핑
Top으로 이동