전체기사 최신뉴스 GAM
KYD 디데이
산업 생활경제

[김정호의 4차혁명 오딧세이] 인공지능 설계 순서

기사입력 :

최종수정 :

※ 본문 글자 크기 조정

  • 더 작게
  • 작게
  • 보통
  • 크게
  • 더 크게

※ 번역할 언어 선택

[편집자] 4차 산업혁명은 모든 사물과 인간을 연결하여 빅데이터를 모으고, 이를 이용하여 인공지능으로 학습하여, 결국 인공지능이 인간을 대체하는 시대를 말한다. 이러한 4차 산업혁명의 물결이 산업뿐만 아니라 경제, 사회, 정치 등 전 분야에 걸쳐서 막대한 변화를 일으키고 있다.

글로벌뉴스통신사 뉴스핌은 '김정호의 4차혁명 오딧세이' 칼럼을 매주 연재하여 4차 산업혁명의 본질과 영향, 그리고 전망을 독자들에게 쉽게 소개하고자 한다. 4차 산업혁명의 핵심은 바로 인공지능, 빅데이터, 클라우드 컴퓨팅으로 표현할 수 있으며 그 핵심 부품이 반도체이다. 이들 핵심 기술의 개념과 원리, 응용을 설명하여 일반 독자들이 4차 산업혁명에 대해서 공감하고 이해하며 더 나아가 개인과 기업, 국가의 미래를 계획하는 것을 돕고자 한다.

김정호 카이스트(KAIST) 전기 및 전자공학과 교수는 서울대 전기공학과를 졸업하고 미국 미시건대에서 박사 학위를 받았다. AI대학원 겸임교수, IEEE펠로우, 카이스트 ICT석좌교수, 한화 국방 인공지능 융합연구 센터장, 삼성전자 산학협력 센터장 등을 겸하고 있다.

 

인공지능 개발의 시작 조건

심층기계학습(Deep Machine Learning)으로 불리는 인공지능이 가까운 미래에 인간의 역할을 대부분 대체할 전망이다. 특히 단순 사무직, 자료 조사, 문서 작성, 상담, 심사, 면접 등은 인공지능이 쉽게 잘 할 수 있다.

김정호 교수

은행 창구 지원, 전화 상담원 등이 사라질 대표적인 직업이라 생각한다. 더 나아가 교육자, 의사, 변호사, 법관 등도 그 역할의 상당 부분이 인공지능으로 바뀐다. 인공지능은 빠르고 정확하면서 쉬지도 않는다. 노동조합도 없다.

그 결과, 인간이 '일'과 '노동'에서 소외될 가능성이 크다. 일하고 싶어도 일할 기회가 없어진다는 뜻이다. 앞으로 자라나는 청년들의 취업이 더욱 어려워질 전망이다. 이상적인 상황은 인공지능이 인간의 '일'을 대신해 주고, 대신 인간은 여가 생활, 취미생활, 여행, 독서 등 여가 활동이나 창작 활동을 할 수 있다. 또는 봉사 활동들을 통해서 삶의 의미를 높일 수 있겠다.

인공지능이 인간을 위해서 일을 하도록 하기 위해서는 인공지능을 그러한 목적에 맞게 경제적으로 설계를 해야 한다. 경제적이라는 것은 비용, 시간을 최소화해야 한다는 뜻이다. 그러려면 먼저, 설계하는 인공지능의 목적이 명확할 필요가 있겠다. 일을 대신 할지, 새로운 서비스를 창조할지 등이다.

그리고 그것을 통해서 얻고자 하는 바를 설계에 잘 설정해야 한다. 인간에게 도움을 줄지, 이윤을 얻을지, 효율을 높일지, 에너지나 자원을 절약할지 등이다. 목적하는 바가 인간을 이롭게 해야 한다. 인간을 공격하거나, 인간을 괴롭히지는 말아야 한다.

어찌하거나 인공지능을 설계하려면 목적이 친 인간적이어야 한다. 그리고 개발에 필요한 투자와 거기서부터 얻는 이득 또는 효과가 균형이 맞아야 한다.

인공지능 설계 순서

인공지능의 목적이 명확해지면 설계에 들어간다. 이때 먼저 지도학습 방법을 사용할 것인가, 비지도 학습 방법을 채택할 것인가 정해야 한다.

지도학습에서 대표적인 인공지능 구조가 CNN(Convolution Neural Network), RNN(Recurrent Neural Network), LSTM(Long-term Short-term Memory) 등이 있다.

비지도 학습의 대표적인 구조로 강화 학습이 있다. 판별, 판단(Classification), 인식, 이해, 번역, 인식 등에는 지도학습이 유리하고 게임, 투자, 설계, 최적화 등에는 강화학습이 유용하다.

인공지능 강화학습에 사용되는 동적 프로그래밍(Dynamic Programming)의 예. [출처=KAIST]

다음 단계로, 개발하려는 인공지능의 입력과 출력이 정해진다. 입력은 이미지, 영상, 문장, 책, 소리 등 다양한 디지털 데이터가 된다. 원하는 인공지능 학습과 판단에 필요한 입력 데이터를 설정하고, 충분한 학습과 테스트에 필요한 데이터를 확보해야 한다.

다음으로는 출력을 정해야 한다. 제목이 될 수도 있고, 캡션(caption)이 될 수도 있고, 판단 문장이 될 수도 있고, 그림이 될 수도 있다. 더 나아가 언어가 될 수도 있고, 문장이 될 수도 있고, 목소리가 될 수도 있다.

이때, 지도 학습을 한다고 하면 학습에 쓰일 데이터를 정해야 한다. 그리고 데이터에 설명(Labeling)해야 한다. 어찌 보면 학습용 데이터를 확보하는 것이 가장 난도가 높고 시간과 비용이 많이 들어간다고 볼 수 있다.

데이터를 사업장에서 구할 수도 있다. 구글, 아마존은 자체 플랫폼을 이용해서 데이터를 모은다. 또는 인터넷에서 구할 수도 있다. 이 모든 작업에는 개인의 프라이버시를 침해하지 말아야 하는 어려운 점이 있다. 그래서 플랫폼 확보가 경쟁력이기도 하다.

이렇게도 구하기 어려운 경우, 컴퓨터 시뮬레이션으로 데이터를 만들어 학습하기도 한다. 미래에는 학습용 데이터 자체를 컴퓨터 인공지능으로 만들 수도 있다. 그러면 점점 인공지능은 인간의 손을 떠나게 된다.

이제 인공지능망의 구조(Architecture)를 정해야 한다. CNN, RNN, LSTM을 바로 쓰거나 변형할 수 있다. 대부분 기본 구조를 따르면서 변형하게 된다.

또는 복합적으로 합쳐서 사용하기도 한다. 이때, 데이터 자체도 문장, 그림, 목소리 등 융합적으로 사용하기도 한다. 이런 구조를 멀티모달(Multi-modal) 구조라고 하기도 한다. 앞으로 인공지능 목적에 맞게 새로운 인공지능망 구조도 나오고, 융합할 것으로 예상한다. 이 부분이 창의성이 요구되는 설계 부분이다.

이제 구조가 정해지면 수학적 함수들을 정해야 한다. 활성화 함수(Activation Function)와 비용함수(Cost Function) 등이 구해진다. 이들 함수를 이용해서 역전파 방정식(Back Propagation Chain Relation)을 구한다.

인공지능 설계 순서도. [출처=KAIST]

이 함수들은 판별과 전파, 학습과정에서 핵심 역할을 하는 수학 함수다. 수학 실력이 가장 필요한 부분이다. 그리고 설계 변수(Hyper-parameter)들을 정하고 출력 함수, 신경망 층수, 노드 개수 등을 정한다. 최적화 방법, 초기화 방법도 정한다. 여기에는 개발 경험이 많이 필요하다.

이제 구상된 인공지능을 소프트웨어로 구현한다. 여러 가지의 공개된 프레임워크(Framework)를 사용할 수 있다. 보통 구글에서 개발하고 공개한 '텐서 플로우(Tensor Flow)'를 많이 사용하며, 그 상위 언어로 파이선(Python)을 사용한다. 이때 코딩 능력이 필요하다.

다음 단계에서는 개발한 인공지능을 데이터로 학습하며, 테스트를 거친다. 그리고 일정 부분 오차율 미만이 될 때까지 변수와 구조를 최적화해 간다. 이 부분 또한 시간이 오래 걸린다. 목표한 성능이 나올 때까지 반복적인 작업이 계속된다. 인력과 시간이 소모된다.

마지막으로 목표한 사업 또는 미션에 부합하는지 점검하게 된다. 최종 점검 단계에서 목표한 성능이 나오지 않으면, 구조를 바꿔 다시 설계 작업을 해야 한다. 이처럼 반복 작업이 많다. 반복 작업 줄이려면 경험과 수학, 코딩 실력이 필요하다. 이러한 작업은 작게는 수개월에서 수년의 시간이 걸린다.

인공지능 개발 최종 평가

개발한 인공지능의 평가는 결국 시장에서 받게 된다. 사용자가 많이 생기고 수익이 많으면 성공적이라고 볼 수 있다. 즉, 투자 대비 수익이 높아야 한다. 여기서 수익은 현금, 이익, 수수료 또는 노동, 에너지, 시간 절약 등으로 볼 수 있다. 또는 주관적인 행복, 평화, 사랑 등이 지표가 될 수도 있다.

결국 성능이 좋은 인공지능의 향방은 인공지능 구조의 우수성과 데이터 확보의 용이성, 투자 대비 효과 등이 좌우할 전망이다. 여기에 더해 관리비용, 하드웨어 투자비용, 유지비용도 포함된다. 한발 더 나아가, 개발할 인공지능이 가지는 사회적 가치와 윤리 준수도 중요한 평가 항목이 되어야 한다. 

김정호 카이스트 전기 및 전자공학과 교수 joungho@kaist.ac.kr 

[뉴스핌 베스트 기사]

사진
LG전자, 홈로봇 '클로이드' CES 공개 [라스베이거스=뉴스핌] 김아영 기자 = LG전자가 오는 6일(현지시간) 미국 라스베이거스에서 개막하는 세계 최대 가전·IT 전시회 CES 2026에서 홈로봇 'LG 클로이드(LG CLOiD)'를 공개한다고 4일 밝혔다. LG 클로이드는 AI 홈로봇의 역할과 가능성을 보여주는 콘셉트 제품이다. 사용자의 스케줄과 집 안 환경을 고려해 작업 우선순위를 정하고, 여러 가전을 제어하는 동시에 일부 가사도 직접 수행하며 비서 역할을 수행한다. 이번 공개는 '가사 해방을 통한 삶의 가치 제고(Zero Labor Home, Makes Quality Time)'를 지향해온 LG전자 가전 전략의 연장선이라는 것이 회사 측 설명이다. LG 클로이드가 세탁 완료된 수건을 개켜 정리하는 모습. [사진=LG전자] ◆CES서 보여주는 '제로 레이버 홈' 관람객은 CES 전시 부스에서 클로이드가 구현하는 '제로 레이버 홈' 시나리오를 볼 수 있다. 출근 준비로 바쁜 거주자를 대신해 전날 세운 식단에 맞춰 냉장고에서 우유를 꺼내고, 오븐에 크루아상을 넣어 아침 식사를 준비하는 모습 등이 연출된다. 차 키와 발표용 리모컨 등 일정에 맞는 준비물을 챙겨 전달하는 장면도 포함된다. LG 클로이드가 크루아상을 오븐에 넣으며 식사를 준비하는 모습. [사진=LG전자] 거주자가 집을 비운 동안에는 세탁물 바구니에서 옷을 꺼내 세탁기에 넣고, 세탁이 끝난 수건을 개켜 정리하는 시나리오가 제시된다. 청소로봇이 움직일 때 동선 위 장애물을 치워 청소 효율을 높이는 역할도 수행한다. 홈트레이닝 시에는 아령을 들어 올린 횟수를 세어주는 등 거주자의 일상 케어 기능도 시연한다. 이러한 동작은 상황 인식, 라이프스타일 학습, 정교한 모션 제어 능력이 결합돼 구현된다는 설명이다. ◆가사용 폼팩터·VLM·VLA로 최적화 클로이드는 머리와 두 팔이 달린 상체와 휠 기반 자율주행 하체로 구성된다. 허리 각도를 조정해 높이를 약 105cm에서 143cm까지 바꿀 수 있으며, 약 87cm 길이의 팔로 바닥이나 다소 높은 위치의 물체도 집을 수 있다. LG 클로이드가 거주자 위한 식사로 크루아상을 준비하는 모습.[사진=LG전자] 양팔은 어깨 3축(앞뒤·좌우·회전), 팔꿈치 1축, 손목 3축(앞뒤·좌우·회전) 등 총 7자유도(DoF)를 적용해 사람 팔과 유사한 움직임을 구현한다. 다섯 손가락도 개별 관절을 가져 섬세한 동작이 가능하도록 설계됐다. 하체에는 청소로봇·Q9·서빙·배송 로봇 등에서 축적한 휠 자율주행 시스템을 적용해 무게 중심을 아래에 두고, 외부 힘에도 균형을 유지하면서 상체의 정밀한 움직임을 지원한다. 이족보행보다 비용 부담이 낮다는 점도 상용화 측면의 장점으로 꼽힌다. LG 클로이드가 홈트레이닝을 돕는 모습. [사진=LG전자] 머리 부분은 이동형 AI 홈 허브 'LG Q9' 기능을 수행한다. 칩셋, 디스플레이, 스피커, 카메라, 각종 센서, 음성 기반 생성형 AI를 탑재해 언어·표정으로 사용자를 인식·응답하고, 라이프스타일과 환경을 학습해 가전 제어에 반영한다. LG전자는 자체 개발 시각언어모델(VLM)과 시각언어행동(VLA) 기술을 칩셋에 적용했다. 피지컬 AI 모델 기반으로 수만 시간 가사 작업 데이터를 학습시켜 홈로봇에 맞게 튜닝했다는 설명이다. VLM은 카메라로 들어온 시각 정보를 언어로 해석하고, 음성·텍스트 명령을 시각 정보와 연계해 이해하는 역할을 맡는다. VLA는 이렇게 통합된 시각·언어 정보를 토대로 로봇의 구체적인 행동 계획과 실행을 담당한다. 여기에 LG의 AI 홈 플랫폼 '씽큐(ThinQ)', 허브 '씽큐 온'과 연결 가전이 더해지면 서비스 범위가 넓어진다. 예를 들어 가족과 씽큐 앱에서 나눈 메뉴 대화를 기반으로 식단을 계획하고, 날씨 정보와 창문 개폐 상태를 조합해 비가 오면 창문을 닫는 등의 시나리오가 가능하다. 퇴근 시간에 맞춰 세탁·건조를 마치고 운동복과 수건을 꺼내 준비하는 연출도 제시된다. ◆로봇 액추에이터 브랜드 'LG 악시움' 첫 공개 LG전자는 홈로봇을 포함한 로봇 사업을 중장기 성장축으로 보고 조직·기술 강화에 나서고 있다. 최근 조직개편에서 HS사업본부 산하에 HS로보틱스연구소를 신설해 전사에 흩어져 있던 홈로봇 관련 역량을 모으고, 차별화 기술 확보와 제품 경쟁력 제고를 목표로 삼았다. LG 액추에이터 악시움(AXIUM) 이미지. [사진=LG전자] 이번 CES에서는 로봇용 액추에이터 브랜드 'LG 액추에이터 악시움(LG Actuator AXIUM)'도 처음 공개한다. '악시움'은 관절을 뜻하는 'Axis'와 Maximum·Premium을 결합해 고성능 액추에이터를 지향한다는 의미를 담았다. 액추에이터는 모터·드라이버·감속기를 통합한 모듈로 로봇 관절에 해당하며, 로봇 제조원가에서 비중이 큰 핵심 부품이다. 피지컬 AI 확산과 함께 성장성이 높은 후방 산업으로 평가된다. LG전자는 가전 사업을 통해 고성능 모터·부품 기술을 축적해왔다. AI DD 모터, 초고속 청소기용 모터(분당 15만rpm), 드라이버 일체형 모터 등 연간 4,000만 개 이상 모터를 자체 생산하고 있다. 회사는 이 같은 기술력이 액추에이터의 경량·소형·고효율·고토크 구현에 기반이 될 것으로 기대한다. 휴머노이드 한 대에 수십 개 액추에이터가 필요한 만큼, LG의 모듈형 설계 역량도 맞춤형 다품종 생산에 도움이 될 것으로 전망된다. ◆홈로봇 성능·폼팩터 진화 지속…축적된 로봇 기술은 가전에 확대 적용 LG전자는 집안일을 하는 데 가장 실용적인 기능과 형태를 갖춘 홈로봇을 지속 개발하는 동시에 청소로봇과 같은 '가전형 로봇(Appliance Robot)'과 사람이 가까이 가면 문이 자동으로 열리는 냉장고처럼 '로보타이즈드 가전(Robotized Appliance)' 등 축적된 로봇 기술을 가전에도 확대 적용할 계획이다. AI가전과 홈로봇에게 가사일을 맡기고, 사람은 쉬고 즐기며 가치 있는 일에만 시간을 쓰는 AI홈을 만드는 것이 목표다. 백승태 LG전자 HS사업본부장 부사장은 "인간과 교감하며 깊이 이해해 최적화된 가사 노동을 제공하는 홈로봇 'LG 클로이드'를 비롯해 '제로 레이버 홈' 비전을 향한 노력을 지속해 나갈 것"이라고 밝혔다. aykim@newspim.com 2026-01-04 10:00
사진
의대 정시 지원자 5년 만에 최저 [서울=뉴스핌] 정일구 기자 = 올해 의과대학 정시모집 지원자가 큰 폭으로 줄어 최근 5년 중 최저치를 기록했다. 4일 종로학원에 따르면 2026학년도 전국 39개 의대 정시모집 지원자는 7125명으로 전년대비 32.3% 감소했다. 지원자는 2022학년도 9233명, 2023학년도 844명, 2024학년도 8098명, 2025학년도 1만518명으로 집계됐다. 사진은 4일 서울 시내의 한 의과대학 모습. 2026.01.04 mironj19@newspim.com   2026-01-04 15:57
기사 번역
결과물 출력을 준비하고 있어요.
종목 추적기

S&P 500 기업 중 기사 내용이 영향을 줄 종목 추적

결과물 출력을 준비하고 있어요.

긍정 영향 종목

  • Lockheed Martin Corp. Industrials
    우크라이나 안보 지원 강화 기대감으로 방산 수요 증가 직접적. 미·러 긴장 완화 불확실성 속에서도 방위산업 매출 안정성 강화 예상됨.

부정 영향 종목

  • Caterpillar Inc. Industrials
    우크라이나 전쟁 장기화 시 건설 및 중장비 수요 불확실성 직접적. 글로벌 인프라 투자 지연으로 매출 성장 둔화 가능성 있음.
이 내용에 포함된 데이터와 의견은 뉴스핌 AI가 분석한 결과입니다. 정보 제공 목적으로만 작성되었으며, 특정 종목 매매를 권유하지 않습니다. 투자 판단 및 결과에 대한 책임은 투자자 본인에게 있습니다. 주식 투자는 원금 손실 가능성이 있으므로, 투자 전 충분한 조사와 전문가 상담을 권장합니다.
안다쇼핑
Top으로 이동