전체기사 최신뉴스 GAM
KYD 디데이
산업

속보

더보기

[인간 vs 인공지능] 1패한 알파고, 이틀간 얼마나 강해졌을까

기사입력 :

최종수정 :

※ 본문 글자 크기 조정

  • 더 작게
  • 작게
  • 보통
  • 크게
  • 더 크게

※ 번역할 언어 선택

"기계가 학습하려면 방대한 데이터 필요"..진 게임서 바로 교훈 얻기 힘들듯

[뉴스핌=이수경 기자] 1국..2국..3국..이세돌 9단은 패배를 거듭할 때마다 동료 기사들과 밤새 복기를 하며 알파고의 바둑을 분석했고 결국 약점을 찾아냈다.

오늘(15일) 구글 인공지능 컴퓨터인 알파고(AlphaGo)와 이 9단이 마지막 대국을 앞둔 가운데 알파고가 자신이 패배했던 4국보다 '더 나은' 대국 실력을 보일 수 있을지 관심이 모아지고 있다. 알파고의 학습능력이 관심인 것이다.

전문가들은 컴퓨터의 경우 학습을 위해서는 방대한 데이터가 필요하기 때문에 이 9단과 4판을 두었다고 해서 알파고의 바둑지능이 올라가지는 않을 것이라고 봤다.

이세돌 9단이 13일 4국 대결을 마치고 활짝 웃고 있다. <사진=구글코리아>

 ◆ 알파고, 정말 기계적 결함 드러냈나

지난 13일 대국에서는 이 9단이 허를 찌르는 '묘수'로 알파고를 상대로 기적적인 첫 승을 거머쥐었다. 업계 전문가들은 이 9단이 4번국 78번째 수에서 알파고가 학습하지 않은 창의적인 수를 두자, 알파고가 응수하는 데 어려움을 겪었다고 분석하기도 했다. 

이를 두고 이 9단은 경기 직후 열리 기자 간담회에서 "(알파고가) 자기가 생각하지 못했던 수가 나왔을 때, 버그 형태의 수가 진행됐다"며 "생각 못 했을 때 대처 능력이 떨어졌다"며 말한 바 있다.  

데미스 하사비스 딥마인드 대표는 자신의 SNS를 통해 79수 때 70%였던 승률이 87수 때는 50% 이하로 떨어졌다고 밝히기도 했다.

실제로 알파고가 지난 4국 경기에서 기계적인 결함을 드러냈다고 볼 수 있을까? 

이에 대해 추형석 소프트웨어정책연구소 선임연구원은 "알파고의 학습 알고리즘이 잘못됐거나 그런 문제는 아니다"며 "계산상의 오차가 발생한 것일 뿐"이라고 일축했다. 

계산할 시간만 충분하다면 사람이든, 인간이든 어떻게든 묘수를 찾는 데 성공한다는 설명이다. 그러나 바둑과 같은 게임에는 한정된 자원이 주어진다. 바로 '시간'이다. 제한시간 안에 가장 좋은 값을 찾는 것이 실력이다. 

추 연구원은 "구글 알파고 이후에 2탄, 3탄 버전이 나오더라도 경우의 수를 100% 완벽하고 정확하게 계산할 수는 없을 것"이라며 "다만, 계산할 시간이 충분하면 좀 더 정확한 값을 찾는 것이고, 바둑처럼 제한시간이 있는 경우에는 그 시간 동안 탐색한 것 중 가장 좋은 값을 보여주는 것"이라고 말했다. 

지난 4국 때와 마찬가지로 이 9단이 알파고가 전혀 예측하지 못한 수를 내놓으면 어떻게 될까? 상대방이 '착수'할 거라 예상하고 미리 계산해놓은 데이터들을 버리고 알파고는 재탐색(계산)을 한다. 그렇지만 알파고가 초읽기에 몰리지 않는 이상, 탐색할 여유는 많다. 이 9단이 예상외 수를 놓더라도 알파고가 여기에 대응할 수 있는 여건은 충분하다는 의미다.  

◆ 스스로 진화하는 알파고의 '머신러닝'

데미스 하사비스 구글 딥마인드 CEO는 알파고가 머신러닝의 학습 알고리즘 중 하나인 심화학습(Deep Learning, 딥러닝)을 통해 스스로 학습한다고 설명한 바 있다.   

'인공지능'이 인간과 같은 사고를 하는 컴퓨팅을 총칭한다면, '머신러닝'은 데이터를 분석하여 숨겨진 특성, 즉 패턴을 발견해 모델을 구축하는 학습 기술을 뜻한다. 더 나아가 경험으로부터 습득한 지식을 기반으로 스스로 성능을 향상시키는 과학이라고 볼 수도 있다.  

'딥러닝'은 심화신경망을 활용하는 것이다. 사람의 뇌가 정보를 처리하는 것과 유사한 방식으로 다계층의 신경망 구조를 통해 스스로 특징값을 추출해 학습한다.  

고속으로 학습하기 위해 알파고는 분산 컴퓨팅환경에서 최고의 성능을 냈다. 계산에 사용된 CPU는 1202개, GPU는 176개에 이른다. 그리고 딥러닝을 활용해 프로기사의 기보 16만개를 학습했다. 고작 5주만의 성과다. 

구글은 아이디어(기보), 컴퓨팅자원(대용량 계산 및 분산 컴퓨팅)을 갖추고 딥러닝을 통해 알파고의 학습지능을 강화시킨 셈이다.

이세돌 9단(사진 왼쪽)이 13일 4국 대결을 마치고 활짝 웃고 있다. <사진=구글코리아>

◆ "기계가 학습하려면 어느 정도 큰 규모의 데이터 필요"

지난 4국 대결 결과를 놓고 이세돌 9단이 2연승을 하지 않겠느냐는 조심스러운 관측도 나오고 있다. 알파고가 이 9단과의 4번의 경기를 치렀지만, 그 학습량이 충분하지 않고 하루 이틀 사이에 그 학습수준을 올리기에는 어렵다는 이유에서다. 

장병탁 서울대학교 교수는 "딥러닝 기술을 활용한 알파고는 인간의 기보를 단순히 학습하는 것 뿐만 아니라 사람처럼 바둑을 두는 수준에 이르렀다"고 평가하면서도 "'하루’, '이틀’이라는 짧은 시간 안에 이 9단의 전략을 학습하는 데는 한계가 있다"고 평가한 바 있다. 

추형석 연구원도 이 의견에 동의했다. 추 연구원은 "하루, 이틀 학습한다고 해서 알파고의 지능이 갑자기 높아지지는 않을 것"이라고 추측했다. 

하사비스 CEO는 "기계가 학습하기 위해서는 어느 정도 큰 규모의 데이터가 필요하다"며 "인간은 한 사례만 가지고도 본인이 가진 다른 지식을 가지고 와서 쉽게 배우기 때문에 인간의 학습 효율성이 더 높다"고 말하기도 했다.  

하지만 경기 결과는 한치 앞도 예측할 수 없는 상황이다. 알파고는 자신이 학습한 데이터에 대해서는 강한 자신감을 보인다. 4국때처럼 이 9단이 알파고가 학습하지 않은 '묘수'를 또다시 놓는다는 보장도 없다.  

한 전문가는 "바둑의 경우의 수를 따졌을 때 오차 범위에 대해서는 인간이 기계를 따라갈 수 없다"며 "학습 데이터가 커지면 커질수록 정확도가 향상되는 만큼 마지막 경기 결과는 어떻게 될지 지켜봐야 할 것 같다"고 밝혔다.  

 

[뉴스핌 Newspim] 이수경 기자 (sophie@newspim.com)

[뉴스핌 베스트 기사]

사진
용산·태릉·과천 등 6만호 조성 [서울=뉴스핌] 이동훈 선임기자 = 서울 용산국제업무지구와 태릉CC(골프장), 경기 과천 경마장(렛츠런파크서울)을 비롯한 서울 도심부와 경기 서울 근교지역에 총 6만가구가 공급된다. 이를 위해 11개 도심 내 공공부지에 4만3500가구가 공급되며 신규 공공주택지구를 새로 지정해 6300가구를 짓는다. 또 도심 내 노후청사를 활용해 모두 9900가구가 지어질 예정이다. 오는 2027년부터 2030년까지 순차적으로 착공한다. ◆ '9·7 주택공급 확대방안' 후속초지...도심 6만 가구 조성 29일 국토교통부에 따르면 정부는 이같은 내용을 담은 '도심 주택공급 확대 및 신속화 방안'을 발표했다.  '9·7 주택공급 확대방안'의 후속조치인 이번 1·29 대책에서는 도심권에서 6만가구가 공급된다. 지역별로 서울은 3만2000가구(53.3%), 경기 2만8000가구(46.5%), 인천 100가구(0.2%)가 각각 배정됐다.  공급 계획 [자료=국토부] 먼저 도심내 공공부지에는 4만3500가구를 짓는다. 이 가운데 서울시와 정부가 마련한 기존 공급물량 7400가구를 제외하면 3만6100가구가 새로 지정된 물량이다.  서울 용산구 용산국제업무지구와 캠프킴에서 기존계획 물량 7400가구를 포함한 총 1만2600가구가 공급된다. 서울시가 주관하는 용산국제업무지구에서는 6000가구의 주택을 공급할 예정이었으나 이번 정부 방침에 따라 주택공급수가 1만가구로 4000가구 늘어나게 됐다. 서울시가 주택공급 확대에 대한 문제로 지적했던 학교 신설은 중단한다. 착공은 2028년으로 예정됐다. 수도권전철 남영역 인근 캠프킴 부지의 주택규모는 2500가구로 기존 1400가구에서 1100가구 더 확대됐다. 2029년 착공을 추진한다. 아울러 인기 주거지역인 서빙고동 '501 정보대'부지에도 신혼부부 등을 위한 소형주택 150가구를 짓는다. 2029년 착공 예정이다.  경기 과천시 일원 과천경마장과 방첩사 부지에서 9800가구를 건립한다. 정부는 과천 경마장(115만㎡)과 국군방첩사령부(28만㎡) 이전 후 해당 부지 총 143만㎡를 통합 개발한다는 방침이다. 경마장과 방첩사 이전계획을 국방부와 농식품부와 협의해 올 상반기내 완료하고 오는 2030년 착공할 예정이다.  문재인 정부시절 주택공급 후보지로 떠올랐던 서울 노원구 태릉CC 총 87만5000㎡에는 6800가구가 공급된다. 정부는 장기간 진척되지 못하던 태릉CC 개발사업을 국가유산청과의 협의를 거쳐 본격 추진하고 주민을 위한 교통대책과 충분한 녹지공간 마련에 나선다는 방침이다. 세계유산영향평가를 거친 후 공공주택 지구지정과 지구계획 수립 등을 병행해 2030년 착공을 추진한다.  경기 성남시 판교테크노밸리 및 성남시청과 인접한 곳에 신규 공공주택지구 성남금토2지구와 성남여수2지구 약 67.4만㎡(20만평)를 지정한다. 이들 신규 택지에는 6300가구가 공급될 예정이다. 두 공공택지는 인허가 및 보상을 완료한 후 착공은 2030년 목표다.  서울 동대문구 일원에서는 국방연구원과 인접한 한국경제발전전시관을 함께 이전하고 이전 부지 총 5만5000㎡ 규모에 주택 1500가구를 짓는다. 국토부는 국조실·기후부·성평등부와 협의해 해당 기관을 2027년 상반기까지 이전하고 이전 시점에 맞춰 사업 승인, 토지 매입 등을 추진해 2029년 착공한다는 방침이다.   서울 인접 역세권 부지와 그간 장기 지연된 사업의 계획을 변경해 총 1만1500여가구를 신규 공급한다. 정부는 이들 지구에 대해 예비 타당성 조사를 면제함으로써 사업 속도를 높일 계획이다.  먼저 경기 광명시 광명경찰서 부지 약 9000㎡에 550가구를 짓는다. 2027년까지 경찰서 이전을 완료하고 이전 일정에 맞춰 2029년 착공한다. 경기 하남시 신장 테니스장 부지 약 5000㎡에는 300가구가 공급된다. 2029년 착공을 목표로 한다.  서울 강서구 강서 군부지 약 7만㎡에는 918가구가 건립된다. 당초 부지 매각 방식으로 추진됐던 이 사업은 위탁개발 방식으로 변경해 재개된다. 2027년 착공될 예정이다. 서울 금천구 독산동 공군부대 13만㎡부지는 군부대 압축·고밀개발 방식으로 2900가구를 공급한다. 착공은 2030년이다.  경기 남양주시 퇴계원 일대 군부대 부지 35만㎡에 4180가구를 짓는다. 예비 타당성 조사를 면제해 2029년 착공을 추진한다. 또 경기 고양시 구국방대학교 부지 33만㎡에는 2570가구를 공급한다. 2029년 착공을 목표로 서울 상암DMC와 잇는 직주근접 미디어밸리를 조성할 방침이다. ◆ 공급확대에 범부처 역량 결집...투기 방지도 병행 정부는 이번 1·29 '도심 주택공급 확대 및 신속화 방안'의 원활한 추진을 위해 '주택공급촉진 관계장관회의'를 신설한다. 회의에서는 발표 부지에 대한 이행 일정 점검 및 조기화를 추진하고 신규 물량 발굴에도 지속 노력한다는 방침이다. 특히 기존 시설 이전이 필요한 부지는 2027년까지 이전을 결정하고 택지 조성에 착수할 수 있도록 범부처가 역량을 결집해 추진상황을 집중 관리할 예정이다.  사업 속도 제고를 위해 2026년 중 국방연구원과 서울의료원, 강남구청 등 13곳에 대한 공기업 예비 타당성 조사 면제를 추진하고 국유재산심의위·세계유산영향평가 등 사전절차도 신속 이행할 계획이다. 아울러 국가가 서민주택 공급 등을 위해 추진하는 공공주택지구조성 사업은 국무회의 등을 거쳐 그린벨트(GB) 해제 총량에서 예외로 인정하는 방안을 5년 한시로 추진한다.  이와 함께 투기 방지를 위해  해당 지구 및 주변지역은 토지거래 허가구역으로 즉시 지정한다. 이를 토대로 투기성 토지 거래 등을 사전에 차단할 방침이다. 정부는 지구·주변지역에 대한 조사 결과 미성년·외지인·법인 매수, 잦은 손바뀜과 같은 이상거래 280건을 선별했으며 이에 대한 분석 및 수사의뢰 조치에 나섰다.   향후 정부는 올 2월 도심 공급 확대를 위한 신규 부지와 제도개선 과제를 발표할 예정이다. 아울러 올 상반기 중 '주거복지 추진방안'을 발표해 청년과 신혼부부 등을 위한 주택공급 확대방안을 내놓을 방침이다.   donglee@newspim.com 2026-01-29 11:00
사진
국힘 최고위, 한동훈 '제명' 의결   [서울=뉴스핌] 신정인 기자 = 국민의힘이 29일 최고위원회의를 열고 한동훈 전 국민의힘 대표에 대한 '제명' 징계안을 의결했다. 최보윤 국민의힘 수석대변인은 이날 오전 서울 여의도 국회 본관에서 브리핑을 통해 "한동훈 전 대표에 대한 당원 징계안이 윤리위 의결대로 최고위에서 의결됐다"고 밝혔다. 이번 표결에는 최고위원 6명과 당 대표, 원내대표, 정책위의장 등 총 9명이 참여했다. 최 수석대변인은 "표결 내용이나 찬반 부분은 비공개"라며 구체적인 표결 결과는 공개하지 않았다. 징계 의결의 취지에 대해 최 수석대변인은 "의결 취지는 이미 윤리위 내용이 공개돼 있어 그 부분을 참고하면 된다"며 "기존 말씀드렸듯이 윤리위 의결대로 최고위에서 의결됐다"고 설명했다. 이날 의결 과정에서 징계 수위를 낮춰야 한다는 논의가 있었는지에 대한 질문에는 "최고위원들 사이 사전회의는 배석하지 않아서 내용을 알지 못한다"고 답했다. 또한 "의결 때 비공개였고 저도 배석하지 않은 관계로 내용에 대해 말씀드리기 어렵다"고 덧붙였다. 장동혁 국민의힘 대표(좌)와 한동훈 전 대표 [사진=뉴스핌 DB] 최 수석대변인은 "절차적으로 의결에 대한 통보 절차가 있을 것으로 보인다"며 "이미 의결이 된 부분으로서 결정된 부분"이라고 강조했다. 징계는 의결과 동시에 효력이 발생한다. 한편 한 전 대표가 가처분을 신청할 가능성에 대해서는 "당 입장은 따로 없다"며 "신청되면 신청 절차에 임해서 필요한 부분 소명이나 그런 부분이 있을 것으로 보인다"고 말했다.  한편 한 전 대표는 이날 오후 국회에서 긴급 기자회견을 열고 제명 확정에 대해 언급할 것으로 전해졌다. allpass@newspim.com 2026-01-29 10:14
기사 번역
결과물 출력을 준비하고 있어요.
종목 추적기

S&P 500 기업 중 기사 내용이 영향을 줄 종목 추적

결과물 출력을 준비하고 있어요.

긍정 영향 종목

  • Lockheed Martin Corp. Industrials
    우크라이나 안보 지원 강화 기대감으로 방산 수요 증가 직접적. 미·러 긴장 완화 불확실성 속에서도 방위산업 매출 안정성 강화 예상됨.

부정 영향 종목

  • Caterpillar Inc. Industrials
    우크라이나 전쟁 장기화 시 건설 및 중장비 수요 불확실성 직접적. 글로벌 인프라 투자 지연으로 매출 성장 둔화 가능성 있음.
이 내용에 포함된 데이터와 의견은 뉴스핌 AI가 분석한 결과입니다. 정보 제공 목적으로만 작성되었으며, 특정 종목 매매를 권유하지 않습니다. 투자 판단 및 결과에 대한 책임은 투자자 본인에게 있습니다. 주식 투자는 원금 손실 가능성이 있으므로, 투자 전 충분한 조사와 전문가 상담을 권장합니다.
안다쇼핑
Top으로 이동