분당서울대병원 이경준·김지향 교수팀, 흉부 X선 5472쌍 분석
[서울=뉴스핌] 정승원 기자 = 분당서울대병원 영상의학과 이경준, 김지항 교수 연구팀은 과거와 현재의 흉부 X선 영상을 비교해 병변 변화를 검출하는 딥러닝 기법을 개발하는데 성공했다고 12일 밝혔다.
흉부 X선 촬영은 검사 시간이 짧고 비용이 비교적 저렴해 폐렴, 폐암 등 폐질환 진단에 널리 이용되고 있다. 최근에는 의료진을 보조해 엑스선 검사 결과를 판독하는 인공지능 진단 시스템 관련 연구들이 활발하게 진행되고 있다.
이경준·김지향 분당서울대병원 영상의학과 교수(사진 왼쪽부터) [제공= 분당서울대병원] |
기존 흉부 X선 영상 관련 연구 사례에서는 진단 알고리즘을 만들 때 단일 시점의 영상만을 독립적으로 분석했다는 점에서 공통적인 한계가 있다.
실제 임상에서 검사결과를 판독할 때는 과거와 현재의 영상을 비교해 병변이 시간의 흐름에 따라 어떻게 변했는지 감지하고 이를 진단에 반영하는 것이 매우 중요하다.
이번 연구에서 이경준 교수 연구팀은 기존 알고리즘이 지닌 한계를 극복하기 위해 딥러닝 기반의 새로운 기술적 접근법을 제시했다.
이를 위해 연구팀은 분당서울대병원에서 확보한 흉부 X선 영상 총 5472쌍을 학습용, 검증용, 테스트용 데이터셋으로 각각 나눴다.
먼저 학습용 데이터 4370쌍으로부터 병변 변화의 기준을 확립하기 위해 X선 촬영 기록이 최소 2회 이상인 환자의 영상과, 이에 대해 의사들이 작성한 판독문을 추출하고, 자연어 처리 알고리즘을 사용해 병변의 변화 패턴에 따라 '변화 있음', '변화 없음' 등으로 판독문을 다시 소분류했다.
이후 주어진 전후 영상에서 변화를 감지하는 알고리즘은 수집된 데이터를 이용해 기계학습(머신러닝) 기반으로 구현했다.
구체적으로는 딥러닝 모델을 사용해 병변 변화의 특징점을 추출한 후 주어진 두 영상 내 특징점들의 상관관계 맵을 생성해 분석하고, 계산된 매칭 상관관계 맵의 분포를 분석해 변화 여부를 결정했다.
그후 기존 연구 및 관련된 사전 연구와 성능을 비교해 변화 검출 성능을 검증하고, 변화 패턴별 검출 성능을 AUC(곡선하면적)를 산출해 통계적으로 정확도를 분석한 결과, 연구팀이 사용한 상관관계 맵 방식의 알고리즘은 정확도가 0.89로 나타나, 기존 알고리즘의 정확도인 0.77 ~ 0.82에 비해 우수했다.
이번 연구는 의료영상에 딥러닝을 접목시킨 사례 중에서도 주어진 두 개의 연속된 영상에서 특정 병변의 시간에 따른 변화를 중점적으로 분석했다는 점에서 의미가 깊다는 것이 연구팀의 설명이다.
앞으로 임상 진단에 있어 우선순위 분류를 위한 객관적 자료로 활용할 수 있을 전망이다.
이경준 분당서울대병원 영상의학과 교수는 "이번에 새롭게 개발한 딥러닝 기법은 급성변화 검출을 포함한 응급상황을 선별하는데 적용하거나, 1차적 진단 도구로 활용될 수 있으며 향후 흉부 방사선 자동판독기술의 고도화 연구로 연결될 수 있다"며 "의료 분야에서 최신 IT기술을 성공적으로 접목한 사례로 향후 융합 연구 활성화에 기여할 것"이라고 전했다.
이번 연구 결과는 의료영상 기술 관련 세계 최고 수준의 학회인 MICCAI(Medical Image Computing and Computer Assisted Intervention, 의료영상기술학회)에서 발표됐다.
origin@newspim.com